Advanced Video Analysis & Imaging (5LSH0), Module 10A

Case Study 1:
3D Camera Modeling-Based Sports Video Analysis

Peter H.N. de With & Jungong Han

(jp.h.n.de.with@tue.nl)

Outline

∗ Motivation
∗ System overview
∗ 3D camera calibration for court-net sports
 – court-net detection
 – camera matrix computation
∗ Object-level analysis
∗ Semantic-level event detection
∗ 3D scene adaptation
∗ Experiments and demos

Introduction

∗ Motivation
 – large AV files (sports) are stored and retrieved
 – EU project: Philips Research needs to build a home-entertainment system

System Overview

∗ Playing-frame detection
 – actual games take place
∗ Court-net detection and camera calibration
 – provide a mapping between 3D domain and image domain
System Overview

* Player segmentation and tracking in the image
 – provide the position of each player in the picture
* Visual features extraction in the 3D domain
 – smoothing player motion in the 3D domain
 – give the real standing position of each player
* Scene-level content analysis
 – detect several key events
 – 3D scene adaptation

3D CC: Implementation

* To implement this 3D camera modeling, we need:
 – two perpendicular planes to describe the 3-D scene
 – at least six points to characterize these two planes
* Problem?
 – select features, which can characterize these planes
 – court line and net line have similar properties in the picture
* Our solution: two-step algorithm
 – detect court lines based on mapping between the image and a standard court model
 – detect net line and refine the detected results

Court Detection and Homography Mapping

* Principle
 – select (arbitrarily) two horizontal and two vertical court lines
 – determine corresponding court lines / points in court model
 – intersection gives four intersection points
 – use point correspondences to solve for camera parameters:
Court-Line Detection

- Detect white pixels that belong to court lines
- Apply RANSAC algorithm to obtain line parameters
- Line parameters are refined

Determining Court-Line Correspondence

- Detect white pixels that belong to court lines
- Apply RANSAC algorithm to obtain line parameters
- Line parameters are refined

Selecting the Best Parameter Set

- Project model back onto image
- Count court-line pixels that are covered by the model:
 - The parameter is the set which gives the highest score
 - Before measuring, perform parameter sanity check:
 - avoids computation of score if parameters are obviously wrong
 - increases robustness by excluding impossible parameter values

Model Tracking

- When applied on a video-sequence, previous parameters sets can be used to compute an initial estimate
- Optimize camera parameters by minimizing distance between model lines and court-line pixels
- Non-linear optimization problem
Net Detection

* For detection, we need three constraints
 - search area
 - length
 - slope

* Net-line refinement
 - select two lines with highest likelihood value
 - measure the position of intersection point of these two lines

3D Camera Calibration Results

- Easy, but normal case
- Challenging case

Playing-Frame Detection

* Luminance of the court line is always bright
* Number of bright pixels composing the court-net lines is relatively constant over an interval of frames
* Use some frames to compute mean and variance of the white pixels

\[
\mu_F = \frac{1}{t_n - t_0 + 1} \sum_{t=t_0}^{t_n} F(t), \quad \sigma_F = \frac{1}{t_n - t_0 + 1} \sum_{t=t_0}^{t_n} (F(t) - \mu_F)^2.
\]

* If \(|F(t) - \mu_F| < 2\sigma_F\), it is a playing frame. Otherwise, it is not a playing-frame

Player Segmentation (1)

* Basic idea
 - moving area of player is limited (inside of the court field and partially surrounding area)
 - color of the court field is uniform, which is also true for surrounding area
 - separately construct background model for each area

* Synthetic background construction
 - color of the court field is a Gaussian distribution
 - color of surrounding area is also a Gaussian distribution
 - mean and variance can be computed
Player Segmentation (2)

* Background generation
 - color inside the court field has Gaussian distribution
 - also true for the field surrounding the court lines

\[\mu_R = \frac{1}{\sum_{u=N^w\rightarrow -W} H_R(u)} \times \sum_{u=N^w\rightarrow -W} u \cdot H_R(u) \]
\[\sigma_R^2 = \frac{1}{\sum_{u=N^w\rightarrow -W} H_R(u)} \times \sum_{u=N^w\rightarrow -W} (u - \mu_R)^2 \cdot H_R(u) \]

* Change detection
 - Mahalanobis distance

\[d_k = (u - \mu)^T \Sigma^{-1} (u - \mu) \]

Player Segmentation (3)

* EM-based background subtraction
 - we want to compute

\[p(w_i|d_k) \]

\[p(w_i|d_k) \]

we can compute

\[p^{(n+1)}(w_i|d_k) = \frac{1}{N} \sum_{k=1}^{N} p^{(n)}(w_i|d_k) \cdot p^{(n)}(w_i) \cdot p(d_k|w_i) \]

\[p^{(n+1)}(w_i|d_k) = \frac{1}{N} \sum_{k=1}^{N} p^{(n)}(w_i|d_k) \cdot p^{(n)}(w_i) \cdot p(d_k|w_i) \]

- initialization

\[p^{(0)}(w_1|d_k) = \text{min}(1.0, d_k/255), \quad \text{and} \quad p^{(0)}(w_2|d_k) = 1 - p^{(0)}(w_1|d_k). \]

Player Segmentation (4)

* Player body location
 - obtain foot position of the player
 - use 3D model to detect the more complete body part of the player

Player Tracking

* Tracking in the image domain
 - mean-shift method when there is no occlusion
 - player silhouette regression-based method when we find occlusion

* Player position smoothing in the 3D domain
 - we need player position with high accuracy
 - DES filter is used
 - our 3D model helps to adaptively change the key parameters

\[\begin{align*}
 s_t &= \alpha \cdot s_{t-1} + (1 - \alpha) \cdot (s_{t-1} + b_{t-1}) , \\
 b_t &= \gamma \cdot (s_t - s_{t-1}) + (1 - \gamma) \cdot b_{t-1} ,
\end{align*} \]
Event Classification (1)

* Feature vector generation
 - P_r: relative position
 - S_i: instant speed of the player
 - S_c: speed change
 - T_r: temporal order of the event

* Event representation based on feature vector
 - service in a single match
 • start at the beginning of the game; opposite half court; limited motion
 - net-approach in a single match
 • large speed change; close to the net
 - both-net in a double match
 • both players have large speed change; close to the net

Event Classification (2)

* Bayesian-based classification
 - we need to compute the a-posteriori probability
 \[
 P(y = c_i | x_1, \ldots, x_p)
 \]
 - according to Bayesian rule
 \[
 P(y = c_i | x_1, \ldots, x_p) = \frac{P(y = c_i)P(x_1, \ldots, x_p | y = c_i)}{\sum_{c_j} P(y = c_j)P(x_1, \ldots, x_p | y = c_j)}.
 \]
 - suppose that given a value for y, all the conditional probabilities $x_1, x_2, \ldots x_p$ are mutually independent, so that:
 \[
 P(x_1, \ldots, x_p | y = c_i) = \prod_{j=1}^{p} P(x_j | y = c_i).
 \]

Event Classification (3)

* Motivation
 - better visualization of sports video on small mobile device

3D Scene Adaptation to Mobile Devices

* Motivation
 - better visualization of sports video on small mobile device
3D SA: Problem Formulation

* Problems
 - Projection matrix obtained by our previous work is not accurate enough
 - In practice, there is a slight slope difference between the 3D projection line and the visible line in the image
 - the angle is changed depending on the height of the camera

3D SA: Basic Idea

* Two constraints
 - computed principal point should be close to the image center
 - configuration matching error should be small

* Our solution
 - probabilistic-based method is used to classify candidate points into two categories: APs and RPs

\[
p(v_i|d_i) = \frac{p_i^T d_i w_i, \mu_i, \sigma_i p(v_i)}{p(d_i)}
\]

- minimize the matching error

\[
E_k = \sum \text{track} |L_{opt} - L_{opt}(X_k)|
\]

3D SA: Virtual Scene Generation

* Virtual camera creation
 - decompose the projection matrix
 - create a virtual camera by changing some of the camera parameters

* Virtual player generation
 - extract player’s shape and texture from real video
 - texture-mapped into the virtual scene

Experimental Results and Demos (1)

* Player segmentation & tracking in the image domain

<table>
<thead>
<tr>
<th>Player</th>
<th>Segmentation when camera is zooming</th>
<th>Segmentation when camera is rotating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct frames</td>
<td>false frames</td>
</tr>
<tr>
<td>1</td>
<td>2105</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>2135</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player</th>
<th>Tracking without occlusion</th>
<th>Tracking during occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tracked frames</td>
<td>mixed frames</td>
</tr>
<tr>
<td>1</td>
<td>2405</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Mean shift: 626</td>
<td>133</td>
</tr>
<tr>
<td>2</td>
<td>2381</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mean shift: 521</td>
<td>180</td>
</tr>
<tr>
<td>3</td>
<td>2509</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>2763</td>
<td>18</td>
</tr>
</tbody>
</table>

such as:

- configuration matching error
Experimental Results and Demos (2)

- Player tracking in the 3D domain

Experimental Results and Demos (3)

- Event detection

<table>
<thead>
<tr>
<th>Type</th>
<th>Match</th>
<th>Event</th>
<th>Feature</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>tennis</td>
<td>single</td>
<td>service</td>
<td>image domain</td>
<td>86%</td>
<td>98.1%</td>
</tr>
<tr>
<td>tennis</td>
<td>single</td>
<td>baseline rally</td>
<td>3-D domain</td>
<td>76.2%</td>
<td>90.2%</td>
</tr>
<tr>
<td>tennis</td>
<td>single</td>
<td>set approach</td>
<td>image domain</td>
<td>87.5%</td>
<td>90.2%</td>
</tr>
<tr>
<td>tennis</td>
<td>double</td>
<td>both-baseline</td>
<td>3-D domain</td>
<td>83.2%</td>
<td>93.7%</td>
</tr>
<tr>
<td>tennis</td>
<td>double</td>
<td>both-set</td>
<td>3-D domain</td>
<td>81.8%</td>
<td>89.2%</td>
</tr>
<tr>
<td>badminton</td>
<td>single</td>
<td>service</td>
<td>3-D domain</td>
<td>90.1%</td>
<td>90.2%</td>
</tr>
<tr>
<td>badminton</td>
<td>double</td>
<td>service</td>
<td>3-D domain</td>
<td>84.3%</td>
<td>90.2%</td>
</tr>
</tbody>
</table>

Experimental Results and Demos (4)

- System efficiency
 - Average execution time per frame (720*576) is 473.8 ms

Experimental Results and Demos (5)

- JPEG at 6.4 kB
- JPEG at 8.5 kB
- Our algorithm at 6.35 kB
Experimental Results and Demos (6)

* Semantic analysis

Experimental Results and Demos (7)

* 3D scene adaption

Experimental Results and Demos (8)

* 3D scene adaption

Conclusion and References

* Novel and robust 3D camera modeling
* Several novel pixel-object-level algorithms based on 3D modeling
* Complete and fast analysis system
* Enables many applications
* References
 - J. Han, D. Farin and P. de With, "Broadcast court-net sports video analysis using fast 3-D camera modeling", IEEE Trans. CSVT, 2008
 - J. Han, D. Farin and P. de With, "An intelligent mixed-reality system for broadcast sports video with applications to mobile devices ", IEEE Multimedia Magazine.