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Abstract—Automatic natural scene understanding and an-
notating regions with semantically meaningful labels, such as
road or sky, are key aspects of image and video analysis. The
annotation of regions is a considered helpful for improving
the object-of-interest detection because the object position in
the scene is also exploited. For a reliable model of a scene
and associated context information, the labeling task involves
image analysis at multiple, both global and local, scene levels.
In this paper, we develop a general framework for performing
automatic semantic labeling of video scenes by combining the
local features and spatial contextual cues. While maintaining a
high accuracy, we pursue an algorithm with low computational
complexity, so that it is suitable for real-time implementation
in embedded video surveillance. We apply our approach to a
complex surveillance use case and to three different datasets:
WaterVisie [1], LabelMe [2] and our own dataset. We show
that our method quantitatively and qualitatively outperfo rms
two sate-of-the-art approaches [3][4].

I. I NTRODUCTION

Video understanding has a demanding but essential appli-
cation in the video surveillance domain. Automatic natural
scene understanding and labeling regions with semantically
meaningful labels (e.g., road, sky, etc.), have increasingly
attracted attention, since they are key aspects in image and
video understanding. One dominant application direction
for scene understanding and region labeling is classifying
pictures in a large database. Alternatively, in our case in
surveillance, the region labeling and video understanding
can improve the analysis of events or contribute to more
reliable object detection.

For a reliable model of a scene and associated context
information, the labeling task involves image feature analysis
at global and local scene levels. Although local features such
as color and texture per pixel or region are instrumental for
understanding, they are typically not uniquely determining
the semantic meaning of such a region (e.g. sky and water).
In general, local features can be influenced by the presence
of other objects as well as by the overall context of the scene.
In most real-world object recognition tasks, the context
provides a rich source of information that can help to
improve the involved object recognition performance and
reduce ambiguities of very local scene information [5].

There is no common understanding on the correct classi-
fication of different types of context into meaningful groups
and categories. In a 3D spatio-temporal space, context refers

to any spatio-temporalinformation [6]. In [7], three main
types of contextual information that can be exploited in
computer vision solutions are proposed. First,probability
(semantic)information refers to the likelihood of an object
being found in some scenes but not in others. Second,size
(scale)exploits the fact that objects have a predetermined
size in relation with other objects in the scene. Third, the
position (spatial)corresponds to the likelihood of finding an
object at specific positions in the scene, with respect to other
objects. In this paper, to reduce ambiguities of local image
information, we propose an automatic region labeling system
based on the observation that each region is more likely
to be found at a specific vertical position. Besides feature
extraction, we intend to exploit the use of scene information
in a learning method to relate image features and labels
to each other. This may also lead to an automatic region
labeling approach. The Support Vector Machine (SVM)
classification provides a better performance compared with
the other approaches [8]. Therefore, we adopt this technique
for further use in our system. In conclusion, we want to
design a system that exploits both feature extraction based
on the above properties, while also employing SVM-based
learning methods to constitute a powerful general framework
for region labeling.

The starting point of our system design is a previously
developed statistical model based on SVM [3], which is
extended here by adding contextual information. We assign
to each region one of the 5 labels: sky, vegetation, con-
struction, road, water plus the class “unknown”. We apply
our approach to a complex surveillance use case and to
three different datasets: WaterVisie, LabelMe [2] and our
own dataset. We also benchmark our algorithm against two
other approaches [3][4], which aim at finding similar types
of regions.

The paper is organized as follows. Section II describes
our approach for region labeling. Section III presents our
results and their application to a surveillance use case.
Conclusions and discussion are provided in Section IV.

II. REGION LABELING APPROACHES

Our algorithm contains three stages, as depicted in
Figures 1 and 2, which will be discussed now.
Stage 1: Uniform regions. The image is divided into several
regions with uniform color using graph-based segmentation.



Figure 1: Our gravity-based region labeling approach.

Stage 2: Feature extraction. The region-based feature (verti-
cal position) and pixel-based features (HSV color space and
a group of Gabor features) of each segmented region are
extracted. Regarding global feature extraction, two methods
are proposed: (1) Spatial Context in which the normalized
vertical position for each pixel is calculated; (2) Global
Region Statistics (GRS) in which intervals for mean and
standard deviation of vertical positions for each specific
region are obtained.
Stage 3: Classification. Our algorithm employs two concepts
in a sequential order.

• Multiple-SVM (one vs. all). For each region class,
an off-line separately trained SVM is used to clas-
sify that region. Given the feature analysis of the
previous stage, color, texture and spatial context
(normalized vertical position) are used for learning
each region class separately. We call the extensive
use of vertical information agravity-based model.
However, this is not sufficient for region classifica-
tion.

• Assigning labels. For each class, we measure the
percentage of pixels classified as belonging to this
class in a given region. We assign a specific label to
a region when the percentage of positively classified
pixels in this region is above a threshold.

Figures 1 and 2 depict the two instantiations of our region
labeling approach. The first approach adds Spatial Context in
the form of the gravity-based model to the feature extraction
stage. The second approach operates without gravity-based
model in the feature extraction, but uses Global Region
Statistics (GRS) in the classification stage. This alternative
is motivated by the property that it avoids training of the
Spatial Context information beyond color and texture, which
are standard features for SVM. Note that in our discussion,
we addressed GRS under feature extraction, but we use it
here inStage 3for classification. This is a way to include
position information at a region level without using the local
gravity-based model. Section II-C2 describes the GRS-based
region labeling approach of Figure 2 in more detail.

A. Stage 1: Uniform regions

We employ an efficient graph-based segmentation as
pre-processing in our region labeling to achieve two ob-
jectives: (a) distinguish each region from other objects
while preserving the overall characterization of the region

Figure 2: Our GRS-based region labeling approach.

itself, (b) perform fast segmentation to support real-time
application in surveillance systems. Details of our graph-
based method can be found in [1].

B. Stage 2: Feature extraction

To train a reliable and robust SVM classifier, it can
be sufficient to use only local features such as color and
texture. However, when classes have similar characteristics,
complications arise, which can be solved by adding spatial
context. It involves the vertical position of the regions in
the image, e.g. the sky tends to be at the top of the image
and the water at the bottom. Summarizing, we combine the
locally calculated pixel-based features and the region-based
features to achieve a more reliable region labeling approach.

1) Pixel-based features: Colorand Texture. We expect
that significant region information is carried by pixel color.
Here, we use the HSV color space [9]. The texture fea-
ture leads to a better classification by analyzing the local
neighborhood variation [10]. Gabor features in addition to
accurate time-frequency location provide robustness against
varying brightness and contrast of images [11]. Kama-
rainenet al. [12] describe the basics of the 2D Gabor filter.

2) Spatial Context (SC): Spatial Context (SC). This
information become specific for the region when a vertical
position is used. This builds a gravity-based model and
helps to overcome the ambiguities of using only color and
texture [13]. For each pixel(i, j), we calculate its normalized
vertical positionSCij = i/n, wherei is the row number,j
the column number andn is the row count of the region.

C. Stage 3: Classification approaches

After segmenting the image and extracting the features,
we proceed to obtain the labeling results. The labeling is
performed by a classification system based on an off-line
trained SVM. Here, we present two approaches for region
classification, as depicted in Figures 1 and 2.

1) Fast classification using the gravity-based model:
In this approach, color, texture and Spatial Context are
used to train the SVM for each region class individually,
to achieve unitary-category classification (i.e. an individual
SVM is trained for each region type). Later, we randomly
sample 100 pixels from a segmented region. The previously
trained SVM for the considered class assigns labels to each
pixel as positive or negative, depending on the classification



results. We calculate the percentage of positive samples
in that region. Then, we label the region as belonging to
the considered class (e.g. we find the segment depicted by
sky), if this percentage of positive samples is higher than
an empirically defined threshold. Our fast unitary-category
classification is described in the inner part of Algorithm 1.

For multi-category labeling, we assign to each segment
one of the 5 labels: sky, vegetation, construction, road, water
plus the class “unknown”. To this end, we classify each
segment by 5 SVMs using our unitary classification (Algo-
rithm 1) and obtain 5 numbers, indicating the percentages of
positive pixels for each SVM. Finally, a segmented region
is assigned to a particular class if its percentage is higher
than the empirical threshold, which we from now on call
Te. Algorithm 1 illustrates our multi-category classification
algorithm with the unitary algorithm embedded into it. The
empirical thresholdTe for each region is set to0.5.

for 5 classesdo
Define the next class type;
for a segmented regiondo

Randomly choose 100 samples in this region and use
the SVM classifier to label the samples;
Calculate the percentage of positive samples in this
region;
if the percentage of positive samples is higher thatTe

then
Set this region is positive;

end
Compare results to thresholdTe;
Label the current region;

end
end
Algorithm 1: Our fast multi-category classification

2) Classification using the GRS-based model:We define
the GRSas the standard deviation and mean of the region
position. Let us assume that we haveM regions of a
particular type, for example sky, in the training set of images.
For each region, we calculate mean valuesµk (k = 1, ...,M)
of the vertical positions of its pixels. We also calculate
the standard deviationσk of the vertical pixel positions
for each region. Then we take minimum and maximum
values for all means and standard deviations for this region
type: µmin = min(µ1, .., µM ), µmax = max(µ1, .., µM ),
σmin = min(σ1, .., σM ) and σmax = max(σ1, .., σM ). In
this way, we obtain intervals for mean and standard deviation
for the region position. We assume that the mean value
of vertical pixel positions lies in the interval(µmin, µmax)
and standard deviation within(σmin, σmax). We find these
intervals for each of the 5 region types described in this
paper. For a correctly labeled region, the region borders are
in the typical interval values for mean and standard deviation
of the vertical positions. Therefore, for assigning a labelto a
region, we check that both following conditions are satisfied:
(1) the percentage of positively classified pixels exceeds
the thresholdTe; (2) the mean and standard deviation of
the vertical positions of the pixels lie in the intervals as
discussed above.

III. R EGION LABELING RESULTS

A. Initial test with still images

We have constructed a broad dataset which consists
of images from multiple Internet datasets and a personal
archive. It contains 5 classes (sky, vegetation, road, water,
construction) plus the class “unknown”. The dataset contains
255 images: 121 images for training, 134 for testing. The
parameters for graph-based segmentation are the same as
in [1]. The means and standard deviations in the GRS-
based model are calculated based on 51 images from the
training set. For benchmarking, we have tested our algorithm
on the LabelMe [2] and WaterVisie [1] datasets. We have
randomly selected 142 images from LabelMe and divided
them into 102 training and 40 test images. We have also
trained our gravity-based model on 111 frames and tested
it on 16 videos of WaterVisie dataset. Figure 3 shows the
original images of the datasets and the corresponding results
of the gravity-based model. Figure 4 illustrates a challenging
image along with the comparison results of three different
reference approaches to highlight the differences between
the labeling algorithms. This image contains several regions
of interest and the color information is quite poor with only
small color differences between neighboring regions. It can
be observed that our gravity-based model achieves results
that better correspond to the ground truth.

To evaluate the performance of the region labeling al-
gorithm, we use the Coverability Rate (CR), which mea-
sures how much of the true region is detected by the
algorithm [15]. In order to benchmark our approach, we
compare our gravity-based model with two state-of-the-art
approaches: Baoet al. [3] and Millet et al. [4]. We have
extended the unitary-category classification of Baoet. al. [3]
into multi-category classification and applied contextualin-
formation as an additional feature. The rule-based approach
proposed by Milletet al. [4] relies on preknowledge on
the relative spatial positions between regions. Table I shows
the results of applying the gravity-based model and GRS-
based model approaches, compared to Bao’s and Millet’s
algorithms on 112 images of our dataset. We can observe
that the gravity-model approach results in a higher CR. Our
gravity-based approach outperforms the recently published
algorithm of Baoet. al. with approximately 2%. Our ap-
proach also surpasses Milletet. al. [4], while preventing any
preset rules which reduce flexibility of the method. Unlike
Millet, our approach does not need to be rebuilt if a new
region is added. The average of CR over six regions for
the gravity-based labeling approach is93% for our dataset,
94% for LabelMe and96% for WaterVisie. This shows a
significant improvement on LabelMe dataset compared to
the 59% reported by Jainet al. [16]. We note though that
Jainet al. [16] aimed at a clearly higher number of semantic
region types, which is more difficult.

B. Video surveillance use case

In this study, we combine an existing group behavior
analysis application [9] with our context detection of the
scene. The group detection approach [9] locates a people
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Figure 3: (a) Image from our dataset, (b) The gravity-based
region labeling of (a), (c) Image from LabelMe [2], (d)
The gravity-based region labeling of (c), (e) Image from
WaterVisie [1], (f) The gravity-based region labeling of (e).

Region Gravity-based model GRS-based model Bao et. al. [3] Millet [4]

Sky 96 96 95 94
Construction 88 88 87 84
Water 93 91 89 89
Road 92 92 92 89
Vegetation 90 85 85 87
Unknown 95 96 97 99
Average 93 91 91 90

Table I: Coverability Rate (%) comparison for several se-
mantic labeling algorithms.

group in a video based on human motion, computed by
an optical flow approach. Road region is labeled by our
proposed gravity-based approach. For finding a car, we
apply a simple motion detection consisting of thresholding
the difference between consecutive frames. If the detected
motion does not belong to the group of moving people, then
it is related to a car movement. Afterwards, if a car moves on
the road where a group is detected, then it is considered as a
dangerous event. Without using context, the group behavior
analysis indicates an abnormal situation when the car is so

(a) (b)

(c) (d)

(e)

Figure 4: (a) Image from our dataset, (b) The gravity-based
region labeling, (c) Region labeling from Baoet. al. [3], (d)
Region labeling from Milletet. al. [4], (e) Ground truth of
(a).

close to the group that it causes the group members to panic
and disperse into different directions. Such late detections
are not sufficiently preventive in surveillance applications.
This has motivated us to apply contextual information in
order to detect the danger much earlier. Experimental re-
sults show that using the contextual information together
with group behavior detection leads to preventive detection
of abnormal events as described above. For context-based
event detection, we have used surveillance videos of our
campus where several abnormal situations are simulated by
a group of volunteers. This involves e.g. running of several
people from the middle of the scene, due to an approaching
car to simulate accident situations on a road. The spatial
resolution of an original video frame is800 × 600 pixels
with 25-Hz frame rate, which is typical for broadcast-TV
surveillance. Figure 5 illustrates an example of an abnormal
situation within our surveillance video with the results from
our group, car and gravity-based detection. Figures 5 (b)
and 5 (c) illustrate the group behavior detections without and
with the use of context, respectively, in particular the frame
where the abnormal event is detected for the first time. It
can be observed that our approach produces an alarm clearly
earlier than the other approach from Figure 5 (b).

IV. CONCLUSION AND DISCUSSION

In this paper, we have presented our ongoing research on
context analysis for outdoor video surveillance, where the
context should provide additional background information
to the already existing foreground object detection, in
order to increase the scene understanding and improve
complex object detection, like person groups. We have
discussed an improved region labeling approach, featuring
besides color and texture also the vertical position as part
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Figure 5: (a) Sample frame of our video sequence, (b) First
abnormal group behavior detection [9] without using context
at frame No. 275, (c) First abnormal event detection when
using context of the video, at frame No. 195.

of a gravity-based model. For local feature extraction, we
have selected a group of Gabor filters combined with the
color feature. For fast classification, we have applied a
random sampling for each segment and the subsequent
multiple-SVM classification is based on a probability model
of the segment to be classified as a specific region type.
As an alternative, we have presented a system without the
gravity-based approach, but with a novel Global Region
Statistics (GRS) based model. This model involves the
computation of mean and standard deviation of the vertical
region positions. Our experimental results show that the
gravity-based model gives the best results and outperforms
two other existing region labeling algorithms, which are
also suitable for context analysis. Our major contributionis
introducing a general framework based on spatial context
(in our case vertical position information) for labeling
each region and its significant effect on surveillance event
detection. The experimental result show that our method
provides both qualitative and quantitative gains, while
maintaining low complexity and high adaptivity to new
semantic region types. Furthermore, we show in a case
study that semantic region labeling as additional background
information improves the result of moving group behavior
analysis in surveillance applications, which increases the
safety of people. Our framework is generic and does not
depend on the type of scene, while our fast algorithms
allow real-time execution.
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