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Abstract—Automatic natural scene understanding and an-  to any spatio-temporalinformation [6]. In [7], three main
notating regions with semantically meaningful labels, suc as  types of contextual information that can be exploited in
road or sky, are key aspects of image and video analysis. The computer vision solutions are proposed. Fistpbability
annotation of regions is a considered helpful for improving  (semantic)information refers to the likelihood of an object
the object-of-interest detection because the object pofn in  paing found in some scenes but not in others. Secsize,
the scene is also exploited. For a reliable model of a scene (scale) exploits the fact that objects have a predetermined

and associated context information, the labeling task invwes . . . . ; : :
image analysis at multiple, both global and local, scene lels. ~ SIZ€ I relation with other objects in the scene. Third, the

In this paper, we develop a general framework for performing ~ POSition (spatialicorresponds to the likelihood of finding an
automatic semantic labeling of video scenes by combining ¢h  Object at specific positions in the scene, with respect teroth
local features and spatial contextual cues. While maintaing a ~ objects. In this paper, to reduce ambiguities of local image
high accuracy, we pursue an algorithm with low computationa  information, we propose an automatic region labeling syste
complexity, so that it is suitable for real-time implementdion based on the observation that each region is more likely
in embedded video surveillance. We apply our approach to a to be found at a specific vertical position. Besides feature
complex surveillance use case and to three different datatse  extraction, we intend to exploit the use of scene infornmatio
Yr\ul::e:u/lrsﬁe[tﬁc’) dLaBgr':{li?at[i?/]elangnguru%\?iltgti(\j/ztlasgltjt Vgﬁosrzqos"" in a learning method to relate image features and labels
WO sate-of-the-arcz approacheys 3] 4? y outp to each other. This may also lead to an automatic region
' labeling approach. The Support Vector Machine (SVM)
classification provides a better performance compared with
the other approaches [8]. Therefore, we adopt this tecleniqu
Video understanding has a demanding but essential applfor further use in our system. In conclusion, we want to
cation in the video surveillance domain. Automatic naturaldesign a system that exploits both feature extraction based
scene understanding and labeling regions with semanticallon the above properties, while also employing SVM-based
meaningful labels (e.g., road, sky, etc.), have incre&ging learning methods to constitute a powerful general framewor
attracted attention, since they are key aspects in image ari@r region labeling.
video understanding. One dominant application direction The starting point of our system design is a previously
for scene understanding and region labeling is classifyingleveloped statistical model based on SVM [3], which is
pictures in a large database. Alternatively, in our case irextended here by adding contextual information. We assign
surveillance, the region labeling and video understandingo each region one of the 5 labels: sky, vegetation, con-
can improve the analysis of events or contribute to moretruction, road, water plus the class “unknown”. We apply
reliable object detection. our approach to a complex surveillance use case and to
For a reliable model of a scene and associated contetpree different datasets: WaterVisie, LabelMe [2] and our
information, the labeling task involves image feature gsial  0wn dataset. We also benchmark our algorithm against two
at global and local scene levels. Although local featuretisu other approaches [3][4], which aim at finding similar types
as color and texture per pixel or region are instrumental foef regions.
understanding, they are typically not uniquely deterngnin The paper is organized as follows. Section Il describes
the semantic meaning of such a region (e.g. sky and waterpur approach for region labeling. Section Ill presents our
In general, local features can be influenced by the presend@sults and their application to a surveillance use case.
of other objects as well as by the overall context of the sceneéConclusions and discussion are provided in Section IV.
In most real-world object recognition tasks, the context
provides a rich source of information that can help to T
improve the involved object recognition performance and '
reduce ambiguities of very local scene information [5]. Our algorithm contains three stages, as depicted in
There is no common understanding on the correct classiFigures 1 and 2, which will be discussed now.
fication of different types of context into meaningful greup Stage 1: Uniform regionsThe image is divided into several
and categories. In a 3D spatio-temporal space, contexsreferegions with uniform color using graph-based segmentation
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Figure 1: Our gravity-based region labeling approach. Figure 2: Our GRS-based region labeling approach.

Stage 2: Feature extractioThe region-based feature (verti- itself, (b) perform fast segmentation to support real-time
cal position) and pixel-based features (HSV color space andpplication in surveillance systems. Details of our graph-
a group of Gabor features) of each segmented region afegased method can be found in [1].

extracted. Regarding global feature extraction, two mesho

are proposed: (1) Spatial Context in which the normalizedB. Stage 2: Feature extraction

vertical position for each pixel is calculated; (2) Global . . e
Region Statistics (GRS) in which intervals for mean and,_ 10 rain a reliable and robust SVM classifier, it can
standard deviation of vertical positions for each specific®€ Sufficient to use only local features such as color and

region are obtained. texture. However, when classes have similar charactesjsti
Stage 3: ClassificatiarOur algorithm employs two concepts cOMPplications arise, which can be solved by adding spatial
in a sequential order. context. It involves the vertical position of the regions in

the image, e.g. the sky tends to be at the top of the image
e  Multiple-SVM (one vs. all)For each region class, and the water at the bottom. Summarizing, we combine the
an off-line separately trained SVM is used to clas-locally calculated pixel-based features and the regiseda
sify that region. Given the feature analysis of the features to achieve a more reliable region labeling apjroac
previous stage, color, texture and spatial context
(normalized vertical position) are used for learning tha
each region class separately. We call the extensivc]g|e
use of vertical information gravity-based model

1) Pixel-based features: Colaand Texture We expect

t significant region information is carried by pixel colo

re, we use the HSV color space [9]. The texture fea-
However, this is not sufficient for region classifica- ture leads to a bgttgr classification by analy_zing the local
. ' neighborhood variation [10]. Gabor features in addition to

N :[Algs]igning labels For each class, we measure theaccurate time-frequency location provide robustnessnagai

percentage of pixels classified as belonging to this/aying brightness and contrast of images [11]. Kama-
class in a given region. We assign a specific label tg@inenet al. [12] describe the basics of the 2D Gabor filter.

a region when the percentage of positively classified  2) spatial Context (SC): Spatial Context (SCjhis
pixels in this region is above a threshold. information become specific for the region when a vertical
osition is used. This builds a gravity-based model and

Figures 1 and 2 depict the two instantiations of our reglorﬁelps to overcome the ambiguities of using only color and

labeling approach. The first approach adds Spatial Corttext itexture [13]. For each pixé&t, j), we calculate its normalized
the form of the gravity-based model to the_ feature ex.tra?ctlo vertical positionSCs; — i/n, wherei is the row number;
stage. The second approach operates without gravity baSﬁge column number and is the row count of the region
model in the feature extraction, but uses Global Region '
Statistics (GRS) in the classification stage. This altévaat ] e

is motivated by the property that it avoids training of the C- Stage 3: Classification approaches

Spatial Context information beyond color and texture, \whic After segmenting the image and extracting the features,
are standard features for SVM. Note that in our discussionye proceed to obtain the labeling results. The labeling is
we addressed GRS under feature extraction, but we use lﬂerformed by a classification system based on an off-line
here inStage 3for classification. This is a way to include trained SVM. Here, we present two approaches for region
position information at a region level without using thedbc  classification, as depicted in Figures 1 and 2.
gravity-based model. Section 11-C2 describes the GRSebase

region labeling approach of Figure 2 in more detail. 1)_ Fast classification using the gravity—k_)ased model:
In this approach, color, texture and Spatial Context are

used to train the SVM for each region class individually,
to achieve unitary-category classification (i.e. an irdiisl

We employ an efficient graph-based segmentation aSVM is trained for each region type). Later, we randomly
pre-processing in our region labeling to achieve two ob-sample 100 pixels from a segmented region. The previously
jectives: (a) distinguish each region from other objectstrained SVM for the considered class assigns labels to each
while preserving the overall characterization of the ragio pixel as positive or negative, depending on the classifioati

A. Stage 1: Uniform regions



results. We calculate the percentage of positive samples [1l. REGION LABELING RESULTS
in that region. Then, we label the region as belonging to Initial test with still i
the considered class (e.g. we find the segment depicted bA)‘/ nitial test with stifl images
sky), if this percentage of positive samples is higher than We have constructed a broad dataset which consists
an empirically defined threshold. Our fast unitary-catggor of images from multiple Internet datasets and a personal
classification is described in the inner part of Algorithm 1. archive. It contains 5 classes (sky, vegetation, road, nvate
construction) plus the class “unknown”. The dataset costai
For multi-category labeling, we assign to each segmen255 images: 121 images for training, 134 for testing. The
one of the 5 labels: sky, vegetation, construction, roadewa parameters for graph-based segmentation are the same as
plus the class “unknown”. To this end, we classify eachin [1]. The means and standard deviations in the GRS-
segment by 5 SVMs using our unitary classification (Algo-based model are calculated based on 51 images from the
rithm 1) and obtain 5 numbers, indicating the percentages dfaining set. For benchmarking, we have tested our algurith
positive pixels for each SVM. Finally, a segmented regionon the LabelMe [2] and WaterVisie [1] datasets. We have
is assigned to a particular class if its percentage is higheandomly selected 142 images from LabelMe and divided
than the empirical threshold, which we from now on call them into 102 training and 40 test images. We have also
T.. Algorithm 1 illustrates our multi-category classificatio trained our gravity-based model on 111 frames and tested
algorithm with the unitary algorithm embedded into it. Theit on 16 videos of WaterVisie dataset. Figure 3 shows the
empirical thresholdl, for each region is set t0.5. original images of the datasets and the correspondingtsesul
of the gravity-based model. Figure 4 illustrates a chaliegg

image along with the comparison results of three different
for 5 classeslo

Define the next class type; reference approaches to highlight the differences between
for a segmented regioto o _ the labeling algorithms. This image contains several regio
Elzng\mlxélggg%ﬁ t100|0a ngﬁée;nmtpqgsfeglon anduse  of interest and the color information is quite poor with only
Calculate the percentage of positive samples in this small color differences betv_veen neighboring regions. it ca
region; be observed that our gravity-based model achieves results
l[l;] the percentage of positive samples is higher that that better correspond to the ground truth.
en
| Setthis region is positive; To evaluate the performance of the region labeling al-
end _ gorithm, we use the Coverability Rate (CR), which mea-
Compare results to threshaold; . .
Label the current region; sures how much of the true region is detected by the
end algorithm [15]. In order to benchmark our approach, we
end compare our gravity-based model with two state-of-the-art

Algorithm 1: Our fast multi-category classification approaches: Baet al. [3] and Millet et al. [4]. We have

extended the unitary-category classification of Baaal.[3]
into multi-category classification and applied contextinal

2) Classification using the GRS-based modak define formation as an additional feature. The rule-based approac

2 ._proposed by Milletet al. [4] relies on preknowledge on
the GRSas the standard deviation and mean of the reglorfhe relative spatial positions between regions. Table Wsho
position. Let us assume that we hawé regions of a

: . - ) the results of applying the gravity-based model and GRS-
part|culartyp.e, for example sky, in the training set of iraag based model approaches, compared to Bao’s and Millet's
For each region, we calculate mean valugsk = 1,..., M) gi0qrithms on 112 images of our dataset. We can observe
of the vertical positions of its p'Xe'$- we also C"?‘IPUIatethat the gravity-model approach results in a higher CR. Our
the standard deviatiom; of the vertical pixel positions

. L . gravity-based approach outperforms the recently puldishe
for each region. Then we take minimum and max'mu.malgorithm of Baoet. al. with approximately 2%. Our ap-

Broach also surpasses Millet. al.[4], while preventing any
preset rules which reduce flexibility of the method. Unlike
Millet, our approach does not need to be rebuilt if a new
region is added. The average of CR over six regions for
fhe gravity-based labeling approachoiz% for our dataset,

type: fimin = Man(pa, -, i)y maz = MAT(H1, -5 [0 ),
Omin = mz’n(ol,..70M) and Omazxr = max(al,..,oM).

this way, we obtain intervals for mean and standard deviatio
for the region position. We assume that the mean valu

of (\j/er:ica(; pié(e(; pc_)s:_tions .Itiﬁ.s in the interv%m?m 57&?1) 94% for LabelMe and96% for Water\Visie. This shows a
and standard deviation wi 'fvm.m’am“)' € 1ind these . significant improvement on LabelMe dataset compared to
intervals for each of the 5 region types described in thIS[he 59% reported by Jairet al. [L6]. We note though that

PatF;]er-t For al _cct)rrectlly I:I:Ibele}d region, thg rfgic(;n %Oédgst.ar\]ainet al.[16] aimed at a clearly higher number of semantic
in the typical interval values for mean and standard dewiati 1oqion vos, which is more difficult,

of the vertical positions. Therefore, for assigning a labed
region, we check that both f(_)!lowmg con_d_|t|ons_are satikfie B. Video surveillance use case
(1) the percentage of positively classified pixels exceeds
the thresholdT,; (2) the mean and standard deviation of In this study, we combine an existing group behavior
the vertical positions of the pixels lie in the intervals asanalysis application [9] with our context detection of the
discussed above. scene. The group detection approach [9] locates a people
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Figure 4: (a) Image from our dataset, (b) The gravity-based
region labeling, (c) Region labeling from Bab. al. [3], (d)
Region labeling from Milletet. al. [4], (e) Ground truth of

(a).

(© (d)

close to the group that it causes the group members to panic
and disperse into different directions. Such late detastio
are not sufficiently preventive in surveillance applicato
This has motivated us to apply contextual information in
® order to detect the danger much earlier. Experimental re-
sults show that using the contextual information together
Figure 3: (a) Image from our dataset, (b) The gravity-basedVith group behavior detection leads to preventive detectio
region labeling of (a), (c) Image from LabelMe [2], (d) ©f abnormal events as described above. For context-based
The gravity-based region labeling of (c), () Image frome€vent detection, we have used surveillance videos of our

WaterVisie [1], (f) The gravity-based region labeling oj.(e ¢@mpus where several abnormal situations are simulated by
a group of volunteers. This involves e.g. running of several

people from the middle of the scene, due to an approaching

[Region [ Gravity-based mode] GRS-based mode] Baoet al[3] | Milet @] ] car to simulate accident situations on a road. The spatial
Sky 9% 9% 95 94 resolution of an original video frame 800 x 600 pixels
Gonstruction - . 5 5 with 25-Hz frame rate, which is typical for broadcast-TV
\F;g;gtation %2 2 % 8 surveillance. Figure 5 illustrates an example of an abnbrma
Unknown o5 9% 97 99 situation within our surveillance video with the resulterfr
Average 93 9T 9T 90 our group, car and gravity-based detection. Figures 5 (b)

. . and 5 (c) illustrate the group behavior detections withat a
Table I: Coverability Rate (%) comparison for several se- i the use of context, respectively, in particular therfea

mantic labeling algorithms. where the abnormal event is detected for the first time. It
can be observed that our approach produces an alarm clearly
earlier than the other approach from Figure 5 (b).

group in a video based on human motion, computed by
an optical flow approach. Road region is labeled by our
proposed gravity-based approach. For finding a car, we In this paper, we have presented our ongoing research on
apply a simple motion detection consisting of thresholdingcontext analysis for outdoor video surveillance, where the
the difference between consecutive frames. If the detectecontext should provide additional background information

motion does not belong to the group of moving people, thero the already existing foreground object detection, in

it is related to a car movement. Afterwards, if a car moves ororder to increase the scene understanding and improve
the road where a group is detected, then it is considered asc@mplex object detection, like person groups. We have
dangerous event. Without using context, the group behaviadiscussed an improved region labeling approach, featuring
analysis indicates an abnormal situation when the car is sbesides color and texture also the vertical position as part

IV. CONCLUSION AND DISCUSSION
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